Dec 06, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data security  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Kaggle Joins Google Cloud by analyticsweek

>> Customer Loyalty 2.0 Article in Quirk’s Marketing Research Review by bobehayes

>> The Big Data Problem in Customer Experience Management: Understanding Sampling Error by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 Want Safer Internet of Things? Change Government Buying Rules. – Nextgov Under  Internet Of Things

>>
 Winter May Bring Bouts of Extreme Cold to Some, Drought Relief to … – Global Banking And Finance Review (press release) Under  Financial Analytics

>>
 Will Cloud and Improving Margins Dominate Amazon’s Earning Report? – Motley Fool Under  Cloud

More NEWS ? Click Here

[ FEATURED COURSE]

Hadoop Starter Kit

image

Hadoop learning made easy and fun. Learn HDFS, MapReduce and introduction to Pig and Hive with FREE cluster access…. more

[ FEATURED READ]

Thinking, Fast and Slow

image

Drawing on decades of research in psychology that resulted in a Nobel Prize in Economic Sciences, Daniel Kahneman takes readers on an exploration of what influences thought example by example, sometimes with unlikely wor… more

[ TIPS & TRICKS OF THE WEEK]

Keeping Biases Checked during the last mile of decision making
Today a data driven leader, a data scientist or a data driven expert is always put to test by helping his team solve a problem using his skills and expertise. Believe it or not but a part of that decision tree is derived from the intuition that adds a bias in our judgement that makes the suggestions tainted. Most skilled professionals do understand and handle the biases well, but in few cases, we give into tiny traps and could find ourselves trapped in those biases which impairs the judgement. So, it is important that we keep the intuition bias in check when working on a data problem.

[ DATA SCIENCE Q&A]

Q:What do you think about the idea of injecting noise in your data set to test the sensitivity of your models?
A: * Effect would be similar to regularization: avoid overfitting
* Used to increase robustness

Source

[ VIDEO OF THE WEEK]

@EdwardBoudrot / @Optum on #DesignThinking & #DataDriven Products #FutureOfData #Podcast

 @EdwardBoudrot / @Optum on #DesignThinking & #DataDriven Products #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data really powers everything that we do. – Jeff Weiner

[ PODCAST OF THE WEEK]

#FutureOfData with Rob(@telerob) / @ConnellyAgency on running innovation in agency

 #FutureOfData with Rob(@telerob) / @ConnellyAgency on running innovation in agency

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Akamai analyzes 75 million events per day to better target advertisements.

Sourced from: Analytics.CLUB #WEB Newsletter

Nov 29, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Fake data  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Data Science is more than Machine Learning  by analyticsweek

>> How data analytics can drive workforce diversity by analyticsweekpick

>> Steph Curry’s Season Stats in 13 lines of R Code by stattleship

Wanna write? Click Here

[ NEWS BYTES]

>>
 Infor upgrades Talent Science solution – Trade Arabia Under  Talent Analytics

>>
 Fascinating Cricket Statistics – Radio New Zealand Under  Statistics

>>
 Job Role: IoT Solutions Architect – Techopedia (press release) Under  IOT

More NEWS ? Click Here

[ FEATURED COURSE]

Intro to Machine Learning

image

Machine Learning is a first-class ticket to the most exciting careers in data analysis today. As data sources proliferate along with the computing power to process them, going straight to the data is one of the most stra… more

[ FEATURED READ]

Thinking, Fast and Slow

image

Drawing on decades of research in psychology that resulted in a Nobel Prize in Economic Sciences, Daniel Kahneman takes readers on an exploration of what influences thought example by example, sometimes with unlikely wor… more

[ TIPS & TRICKS OF THE WEEK]

Data Analytics Success Starts with Empowerment
Being Data Driven is not as much of a tech challenge as it is an adoption challenge. Adoption has it’s root in cultural DNA of any organization. Great data driven organizations rungs the data driven culture into the corporate DNA. A culture of connection, interactions, sharing and collaboration is what it takes to be data driven. Its about being empowered more than its about being educated.

[ DATA SCIENCE Q&A]

Q:Is it beneficial to perform dimensionality reduction before fitting an SVM? Why or why not?
A: * When the number of features is large comparing to the number of observations (e.g. document-term matrix)
* SVM will perform better in this reduced space

Source

[ VIDEO OF THE WEEK]

@DrewConway on creating socially responsible data science practice #FutureOfData #Podcast

 @DrewConway on creating socially responsible data science practice #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

You can use all the quantitative data you can get, but you still have to distrust it and use your own intelligence and judgment. – Alvin Tof

[ PODCAST OF THE WEEK]

Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

 Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Every person in the US tweeting three tweets per minute for 26,976 years.

Sourced from: Analytics.CLUB #WEB Newsletter

Nov 22, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Trust the data  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> July 31, 2017 Health and Biotech analytics news roundup by pstein

>> For Musicians and Songwriters, Streaming Creates Big Data Challenge by analyticsweekpick

>> Simplifying Data Warehouse Optimization by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Is Population Health on the Agenda as Google Nabs Geisinger CEO? – Health IT Analytics Under  Health Analytics

>>
 How to catch security blind spots during a cloud migration – GCN.com Under  Cloud

>>
 Data Analytics Outsourcing Market Application Analysis, Regional Outlook, Growth Trends, Key Players and Forecasts … – AlgosOnline (press release) (blog) Under  Social Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Statistical Thinking and Data Analysis

image

This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and n… more

[ FEATURED READ]

Big Data: A Revolution That Will Transform How We Live, Work, and Think

image

“Illuminating and very timely . . . a fascinating — and sometimes alarming — survey of big data’s growing effect on just about everything: business, government, science and medicine, privacy, and even on the way we think… more

[ TIPS & TRICKS OF THE WEEK]

Strong business case could save your project
Like anything in corporate culture, the project is oftentimes about the business, not the technology. With data analysis, the same type of thinking goes. It’s not always about the technicality but about the business implications. Data science project success criteria should include project management success criteria as well. This will ensure smooth adoption, easy buy-ins, room for wins and co-operating stakeholders. So, a good data scientist should also possess some qualities of a good project manager.

[ DATA SCIENCE Q&A]

Q:What is: lift, KPI, robustness, model fitting, design of experiments, 80/20 rule?
A: Lift:
It’s measure of performance of a targeting model (or a rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model. Lift is simply: target response/average response.

Suppose a population has an average response rate of 5% (mailing for instance). A certain model (or rule) has identified a segment with a response rate of 20%, then lift=20/5=4

Typically, the modeler seeks to divide the population into quantiles, and rank the quantiles by lift. He can then consider each quantile, and by weighing the predicted response rate against the cost, he can decide to market that quantile or not.
“if we use the probability scores on customers, we can get 60% of the total responders we’d get mailing randomly by only mailing the top 30% of the scored customers”.

KPI:
– Key performance indicator
– A type of performance measurement
– Examples: 0 defects, 10/10 customer satisfaction
– Relies upon a good understanding of what is important to the organization

More examples:

Marketing & Sales:
– New customers acquisition
– Customer attrition
– Revenue (turnover) generated by segments of the customer population
– Often done with a data management platform

IT operations:
– Mean time between failure
– Mean time to repair

Robustness:
– Statistics with good performance even if the underlying distribution is not normal
– Statistics that are not affected by outliers
– A learning algorithm that can reduce the chance of fitting noise is called robust
– Median is a robust measure of central tendency, while mean is not
– Median absolute deviation is also more robust than the standard deviation

Model fitting:
– How well a statistical model fits a set of observations
– Examples: AIC, R2, Kolmogorov-Smirnov test, Chi 2, deviance (glm)

Design of experiments:
The design of any task that aims to describe or explain the variation of information under conditions that are hypothesized to reflect the variation.
In its simplest form, an experiment aims at predicting the outcome by changing the preconditions, the predictors.
– Selection of the suitable predictors and outcomes
– Delivery of the experiment under statistically optimal conditions
– Randomization
– Blocking: an experiment may be conducted with the same equipment to avoid any unwanted variations in the input
– Replication: performing the same combination run more than once, in order to get an estimate for the amount of random error that could be part of the process
– Interaction: when an experiment has 3 or more variables, the situation in which the interaction of two variables on a third is not additive

80/20 rule:
– Pareto principle
– 80% of the effects come from 20% of the causes
– 80% of your sales come from 20% of your clients
– 80% of a company complaints come from 20% of its customers

Source

[ VIDEO OF THE WEEK]

#FutureOfData with @theClaymethod, @TiVo discussing running analytics in media industry

 #FutureOfData with @theClaymethod, @TiVo discussing running analytics in media industry

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Big Data is not the new oil. – Jer Thorp

[ PODCAST OF THE WEEK]

@DrewConway on creating socially responsible data science practice #FutureOfData #Podcast

 @DrewConway on creating socially responsible data science practice #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

According to estimates, the volume of business data worldwide, across all companies, doubles every 1.2 years.

Sourced from: Analytics.CLUB #WEB Newsletter

Nov 15, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Tour of Accounting  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> 5 Advantages of Using a Redshift Data Warehouse by analyticsweek

>> January 23, 2017 Health and Biotech analytics news roundup by pstein

>> May 25, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..) by admin

Wanna write? Click Here

[ NEWS BYTES]

>>
 ND vital statistics hold steady in 2017 – Bismarck Tribune Under  Statistics

>>
 The Use of Ramped Rep Equivalents (RREs) in Sales Analytics and Modeling – Enterprise Irregulars (blog) Under  Sales Analytics

>>
 State Street: Latest investor sentiment towards Brexit – Asset Servicing Times Under  Risk Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Probability & Statistics

image

This course introduces students to the basic concepts and logic of statistical reasoning and gives the students introductory-level practical ability to choose, generate, and properly interpret appropriate descriptive and… more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Save yourself from zombie apocalypse from unscalable models
One living and breathing zombie in today’s analytical models is the pulsating absence of error bars. Not every model is scalable or holds ground with increasing data. Error bars that is tagged to almost every models should be duly calibrated. As business models rake in more data the error bars keep it sensible and in check. If error bars are not accounted for, we will make our models susceptible to failure leading us to halloween that we never wants to see.

[ DATA SCIENCE Q&A]

Q:How do you handle missing data? What imputation techniques do you recommend?
A: * If data missing at random: deletion has no bias effect, but decreases the power of the analysis by decreasing the effective sample size
* Recommended: Knn imputation, Gaussian mixture imputation

Source

[ VIDEO OF THE WEEK]

#FutureOfData with Rob(@telerob) / @ConnellyAgency on running innovation in agency

 #FutureOfData with Rob(@telerob) / @ConnellyAgency on running innovation in agency

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Torture the data, and it will confess to anything. – Ronald Coase

[ PODCAST OF THE WEEK]

Solving #FutureOfWork with #Detonate mindset (by @steven_goldbach & @geofftuff) #JobsOfFuture #Podcast

 Solving #FutureOfWork with #Detonate mindset (by @steven_goldbach & @geofftuff) #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

More than 5 billion people are calling, texting, tweeting and browsing on mobile phones worldwide.

Sourced from: Analytics.CLUB #WEB Newsletter

Nov 08, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data shortage  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ FEATURED COURSE]

Deep Learning Prerequisites: The Numpy Stack in Python

image

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence… more

[ FEATURED READ]

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

image

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the “data-analytic thinking” necessary for e… more

[ TIPS & TRICKS OF THE WEEK]

Fix the Culture, spread awareness to get awareness
Adoption of analytics tools and capabilities has not yet caught up to industry standards. Talent has always been the bottleneck towards achieving the comparative enterprise adoption. One of the primal reason is lack of understanding and knowledge within the stakeholders. To facilitate wider adoption, data analytics leaders, users, and community members needs to step up to create awareness within the organization. An aware organization goes a long way in helping get quick buy-ins and better funding which ultimately leads to faster adoption. So be the voice that you want to hear from leadership.

[ DATA SCIENCE Q&A]

Q:What is your definition of big data?
A: Big data is high volume, high velocity and/or high variety information assets that require new forms of processing
– Volume: big data doesn’t sample, just observes and tracks what happens
– Velocity: big data is often available in real-time
– Variety: big data comes from texts, images, audio, video…

Difference big data/business intelligence:
– Business intelligence uses descriptive statistics with data with high density information to measure things, detect trends etc.
– Big data uses inductive statistics (statistical inference) and concepts from non-linear system identification to infer laws (regression, classification, clustering) from large data sets with low density information to reveal relationships and dependencies or to perform prediction of outcomes or behaviors

Source

[ VIDEO OF THE WEEK]

@BrianHaugli @The_Hanover ?on Building a #Leadership #Security #Mindset #FutureOfData #Podcast

 @BrianHaugli @The_Hanover ?on Building a #Leadership #Security #Mindset #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

If you can’t explain it simply, you don’t understand it well enough. – Albert Einstein

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with @MPFlowersNYC, @enigma_data

 #BigData @AnalyticsWeek #FutureOfData #Podcast with @MPFlowersNYC, @enigma_data

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

140,000 to 190,000. Too few people with deep analytical skills to fill the demand of Big Data jobs in the U.S. by 2018.

Sourced from: Analytics.CLUB #WEB Newsletter

Nov 01, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Accuracy check  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> The User Experience of State Government Websites by analyticsweek

>> Marginal gains: the rise of data analytics in sport by analyticsweekpick

>> The Pitfalls of Using Predictive Models by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 How to Avoid the Trap of Fragmented Security Analytics – Security Intelligence (blog) Under  Analytics

>>
 Are You Spending Too Much (or Too Little) on Cybersecurity? – Data Center Knowledge Under  Data Center

>>
 Most UK businesses are not insured against security breaches and data loss, says study – Information Age Under  Data Security

More NEWS ? Click Here

[ FEATURED COURSE]

Python for Beginners with Examples

image

A practical Python course for beginners with examples and exercises…. more

[ FEATURED READ]

Superintelligence: Paths, Dangers, Strategies

image

The human brain has some capabilities that the brains of other animals lack. It is to these distinctive capabilities that our species owes its dominant position. Other animals have stronger muscles or sharper claws, but … more

[ TIPS & TRICKS OF THE WEEK]

Keeping Biases Checked during the last mile of decision making
Today a data driven leader, a data scientist or a data driven expert is always put to test by helping his team solve a problem using his skills and expertise. Believe it or not but a part of that decision tree is derived from the intuition that adds a bias in our judgement that makes the suggestions tainted. Most skilled professionals do understand and handle the biases well, but in few cases, we give into tiny traps and could find ourselves trapped in those biases which impairs the judgement. So, it is important that we keep the intuition bias in check when working on a data problem.

[ DATA SCIENCE Q&A]

Q:You have data on the durations of calls to a call center. Generate a plan for how you would code and analyze these data. Explain a plausible scenario for what the distribution of these durations might look like. How could you test, even graphically, whether your expectations are borne out?
A: 1. Exploratory data analysis
* Histogram of durations
* histogram of durations per service type, per day of week, per hours of day (durations can be systematically longer from 10am to 1pm for instance), per employee…
2. Distribution: lognormal?

3. Test graphically with QQ plot: sample quantiles of log(durations)log?(durations) Vs normal quantiles

Source

[ VIDEO OF THE WEEK]

@AnalyticsWeek #FutureOfData with Robin Thottungal(@rathottungal), Chief Data Scientist at @EPA

 @AnalyticsWeek #FutureOfData with Robin Thottungal(@rathottungal), Chief Data Scientist at @EPA

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Everybody gets so much information all day long that they lose their common sense. – Gertrude Stein

[ PODCAST OF THE WEEK]

Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

 Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Brands and organizations on Facebook receive 34,722 Likes every minute of the day.

Sourced from: Analytics.CLUB #WEB Newsletter

Oct 25, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Conditional Risk  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Avoiding a Data Science Hype Bubble by analyticsweek

>> The User Experience of University Websites by analyticsweek

>> Landscape of Big Data by v1shal

Wanna write? Click Here

[ NEWS BYTES]

>>
 Beckage PLLC focuses on data security – Buffalo Business First Under  Data Security

>>
 â€‹The data center is dead: Here’s what comes next | ZDNet – ZDNet Under  Data Center

>>
 Global Automotive HVAC Sensors Market Outlook, Size, Status, and Forecast to 2025 – City Councilor Under  Financial Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Lean Analytics Workshop – Alistair Croll and Ben Yoskovitz

image

Use data to build a better startup faster in partnership with Geckoboard… more

[ FEATURED READ]

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

image

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the “data-analytic thinking” necessary for e… more

[ TIPS & TRICKS OF THE WEEK]

Analytics Strategy that is Startup Compliant
With right tools, capturing data is easy but not being able to handle data could lead to chaos. One of the most reliable startup strategy for adopting data analytics is TUM or The Ultimate Metric. This is the metric that matters the most to your startup. Some advantages of TUM: It answers the most important business question, it cleans up your goals, it inspires innovation and helps you understand the entire quantified business.

[ DATA SCIENCE Q&A]

Q:What do you think about the idea of injecting noise in your data set to test the sensitivity of your models?
A: * Effect would be similar to regularization: avoid overfitting
* Used to increase robustness

Source

[ VIDEO OF THE WEEK]

#FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

 #FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Without big data, you are blind and deaf and in the middle of a freeway. – Geoffrey Moore

[ PODCAST OF THE WEEK]

#BigData #BigOpportunity in Big #HR by @MarcRind #JobsOfFuture #Podcast

 #BigData #BigOpportunity in Big #HR by @MarcRind #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

A quarter of decision-makers surveyed predict that data volumes in their companies will rise by more than 60 per cent by the end of 2014, with the average of all respondents anticipating a growth of no less than 42 per cent.

Sourced from: Analytics.CLUB #WEB Newsletter

Oct 18, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Ethics  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ NEWS BYTES]

>>
 Cray Inc (NASDAQ:CRAY) Institutional Investor Sentiment Analysis – Thorold News Under  Sentiment Analysis

>>
 Crimson Hexagon’s Plight In Five Words: Facebook Doesn’t Want … – AdExchanger Under  Social Analytics

>>
 Unisys Unveils TrustCheck™, the First Subscription-Based Service … – APN News Under  Risk Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Process Mining: Data science in Action

image

Process mining is the missing link between model-based process analysis and data-oriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be ap… more

[ FEATURED READ]

The Industries of the Future

image

The New York Times bestseller, from leading innovation expert Alec Ross, a “fascinating vision” (Forbes) of what’s next for the world and how to navigate the changes the future will bring…. more

[ TIPS & TRICKS OF THE WEEK]

Data Analytics Success Starts with Empowerment
Being Data Driven is not as much of a tech challenge as it is an adoption challenge. Adoption has it’s root in cultural DNA of any organization. Great data driven organizations rungs the data driven culture into the corporate DNA. A culture of connection, interactions, sharing and collaboration is what it takes to be data driven. Its about being empowered more than its about being educated.

[ DATA SCIENCE Q&A]

Q:How would you define and measure the predictive power of a metric?
A: * Predictive power of a metric: the accuracy of a metric’s success at predicting the empirical
* They are all domain specific
* Example: in field like manufacturing, failure rates of tools are easily observable. A metric can be trained and the success can be easily measured as the deviation over time from the observed
* In information security: if the metric says that an attack is coming and one should do X. Did the recommendation stop the attack or the attack never happened?

Source

[ VIDEO OF THE WEEK]

Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

 Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

You can use all the quantitative data you can get, but you still have to distrust it and use your own intelligence and judgment. – Alvin Tof

[ PODCAST OF THE WEEK]

@Schmarzo @DellEMC on Ingredients of healthy #DataScience practice #FutureOfData #Podcast

 @Schmarzo @DellEMC on Ingredients of healthy #DataScience practice #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

IDC Estimates that by 2020,business transactions on the internet- business-to-business and business-to-consumer – will reach 450 billion per day.

Sourced from: Analytics.CLUB #WEB Newsletter

Oct 11, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
statistical anomaly  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> How to Successfully Incorporate Analytics Into Your Growth Marketing Process by analyticsweek

>> How the lack of the right data affects the promise of big data in India by analyticsweekpick

>> SDN and network function virtualization market worth $ 45.13 billion by 2020 by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Marketing Analytics Software Market Effect and Growth Factors Research and Projection – Coherent News (press release) (blog) Under  Marketing Analytics

>>
 Streaming Analytics Market Research Study including Growth Factors, Types and Application by regions from 2017 to … – managementjournal24.com Under  Streaming Analytics

>>
 State Street: Latest investor sentiment towards Brexit – Asset Servicing Times Under  Risk Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

CPSC 540 Machine Learning

image

Machine learning (ML) is one of the fastest growing areas of science. It is largely responsible for the rise of giant data companies such as Google, and it has been central to the development of lucrative products, such … more

[ FEATURED READ]

The Future of the Professions: How Technology Will Transform the Work of Human Experts

image

This book predicts the decline of today’s professions and describes the people and systems that will replace them. In an Internet society, according to Richard Susskind and Daniel Susskind, we will neither need nor want … more

[ TIPS & TRICKS OF THE WEEK]

Fix the Culture, spread awareness to get awareness
Adoption of analytics tools and capabilities has not yet caught up to industry standards. Talent has always been the bottleneck towards achieving the comparative enterprise adoption. One of the primal reason is lack of understanding and knowledge within the stakeholders. To facilitate wider adoption, data analytics leaders, users, and community members needs to step up to create awareness within the organization. An aware organization goes a long way in helping get quick buy-ins and better funding which ultimately leads to faster adoption. So be the voice that you want to hear from leadership.

[ DATA SCIENCE Q&A]

Q:What are the drawbacks of linear model? Are you familiar with alternatives (Lasso, ridge regression)?
A: * Assumption of linearity of the errors
* Can’t be used for count outcomes, binary outcomes
* Can’t vary model flexibility: overfitting problems
* Alternatives: see question 4 about regularization

Source

[ VIDEO OF THE WEEK]

Understanding #FutureOfData in #Health & #Medicine - @thedataguru / @InovaHealth #FutureOfData #Podcast

 Understanding #FutureOfData in #Health & #Medicine – @thedataguru / @InovaHealth #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data matures like wine, applications like fish. – James Governor

[ PODCAST OF THE WEEK]

Discussing Forecasting with Brett McLaughlin (@akabret), @Akamai

 Discussing Forecasting with Brett McLaughlin (@akabret), @Akamai

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

94% of Hadoop users perform analytics on large volumes of data not possible before; 88% analyze data in greater detail; while 82% can now retain more of their data.

Sourced from: Analytics.CLUB #WEB Newsletter

Oct 04, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Connection Information

To perform the requested action, WordPress needs to access your web server. Please enter your FTP credentials to proceed. If you do not remember your credentials, you should contact your web host.

Connection Type

FTP

FTPS (SSL)

[  COVER OF THE WEEK ]

image
Data interpretation  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> The End of Transformation: Expediting Data Preparation and Analytics with Edge Computing by jelaniharper

>> Movie Recommendations? How Does Netflix Do It? A 9 Step Coding & Intuitive Guide Into Collaborative Filtering by nbhaskar

>> Your Firm’s Culture Need to Catch Up with its Business Analytics? by analyticsweekpick

Wanna write? Click Here

[ FEATURED COURSE]

Artificial Intelligence

image

This course includes interactive demonstrations which are intended to stimulate interest and to help students gain intuition about how artificial intelligence methods work under a variety of circumstances…. more

[ FEATURED READ]

Big Data: A Revolution That Will Transform How We Live, Work, and Think

image

“Illuminating and very timely . . . a fascinating — and sometimes alarming — survey of big data’s growing effect on just about everything: business, government, science and medicine, privacy, and even on the way we think… more

[ TIPS & TRICKS OF THE WEEK]

Save yourself from zombie apocalypse from unscalable models
One living and breathing zombie in today’s analytical models is the pulsating absence of error bars. Not every model is scalable or holds ground with increasing data. Error bars that is tagged to almost every models should be duly calibrated. As business models rake in more data the error bars keep it sensible and in check. If error bars are not accounted for, we will make our models susceptible to failure leading us to halloween that we never wants to see.

[ DATA SCIENCE Q&A]

Q:Give examples of bad and good visualizations?
A: Bad visualization:
– Pie charts: difficult to make comparisons between items when area is used, especially when there are lots of items
– Color choice for classes: abundant use of red, orange and blue. Readers can think that the colors could mean good (blue) versus bad (orange and red) whereas these are just associated with a specific segment
– 3D charts: can distort perception and therefore skew data
– Using a solid line in a line chart: dashed and dotted lines can be distracting

Good visualization:
– Heat map with a single color: some colors stand out more than others, giving more weight to that data. A single color with varying shades show the intensity better
– Adding a trend line (regression line) to a scatter plot help the reader highlighting trends

Source

[ VIDEO OF THE WEEK]

Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

 Solving #FutureOfOrgs with #Detonate mindset (by @steven_goldbach & @geofftuff) #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

The most valuable commodity I know of is information. – Gordon Gekko

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData with Jon Gibs(@jonathangibs) @L2_Digital

 #BigData @AnalyticsWeek #FutureOfData with Jon Gibs(@jonathangibs) @L2_Digital

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

The Hadoop (open source software for distributed computing) market is forecast to grow at a compound annual growth rate 58% surpassing $1 billion by 2020.

Sourced from: Analytics.CLUB #WEB Newsletter