Aug 16, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Accuracy check  Source

[ AnalyticsWeek BYTES]

>> How can a few snippets of code help you clean up your database for a faster performance? by thomassujain

>> Jul 27, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..) by admin

>> Top Online Video Analytics Tools That You Should Use by thomassujain

Wanna write? Click Here

[ NEWS BYTES]

>>
 IoT Is Building Higher Levels Of Customer Engagement – Forbes Under  IOT

>>
 Global Hadoop Market Insights and Trends 2016 – 2022 – Paris Ledger Under  Hadoop

>>
 Cloud Security: 3 Identity and Access Management Musts | CSO … – CSO Online Under  Cloud Security

More NEWS ? Click Here

[ FEATURED COURSE]

Baseball Data Wrangling with Vagrant, R, and Retrosheet

image

Analytics with the Chadwick tools, dplyr, and ggplot…. more

[ FEATURED READ]

Introduction to Graph Theory (Dover Books on Mathematics)

image

A stimulating excursion into pure mathematics aimed at “the mathematically traumatized,” but great fun for mathematical hobbyists and serious mathematicians as well. Requiring only high school algebra as mathematical bac… more

[ TIPS & TRICKS OF THE WEEK]

Grow at the speed of collaboration
A research by Cornerstone On Demand pointed out the need for better collaboration within workforce, and data analytics domain is no different. A rapidly changing and growing industry like data analytics is very difficult to catchup by isolated workforce. A good collaborative work-environment facilitate better flow of ideas, improved team dynamics, rapid learning, and increasing ability to cut through the noise. So, embrace collaborative team dynamics.

[ DATA SCIENCE Q&A]

Q:How do you handle missing data? What imputation techniques do you recommend?
A: * If data missing at random: deletion has no bias effect, but decreases the power of the analysis by decreasing the effective sample size
* Recommended: Knn imputation, Gaussian mixture imputation

Source

[ VIDEO OF THE WEEK]

Discussing #InfoSec with @travturn, @hrbrmstr(@rapid7) @thebearconomist(@boozallen) @yaxa_io

 Discussing #InfoSec with @travturn, @hrbrmstr(@rapid7) @thebearconomist(@boozallen) @yaxa_io

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data that is loved tends to survive. – Kurt Bollacker, Data Scientist, Freebase/Infochimps

[ PODCAST OF THE WEEK]

Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

 Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

14.9 percent of marketers polled in Crain’s BtoB Magazine are still wondering ‘What is Big Data?’

Sourced from: Analytics.CLUB #WEB Newsletter

Aug 09, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Conditional Risk  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> 2018 Trends in Artificial Intelligence: Beyond Machine Learning for Internal and External Personalization by jelaniharper

>> Customer Loyalty Resource for Customer Experience Professionals by bobehayes

>> Estimating Other “Likelihood to Recommend” Metrics from Your Net Promoter Score (NPS) by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 Goldman Sachs enlists staff for cyber security war games – Financial Times Under  cyber security

>>
 DECKER NAMED TO GOOGLE CLOUD ACADEMIC ALL-DISTRICT® FIRST TEAM – Dominican College Athletics Under  Cloud

>>
 Kadant Inc (NYSE:KAI) Institutional Investor Sentiment Analysis – Frisco Fastball Under  Sentiment Analysis

More NEWS ? Click Here

[ FEATURED COURSE]

Machine Learning

image

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending … more

[ FEATURED READ]

Antifragile: Things That Gain from Disorder

image

Antifragile is a standalone book in Nassim Nicholas Taleb’s landmark Incerto series, an investigation of opacity, luck, uncertainty, probability, human error, risk, and decision-making in a world we don’t understand. The… more

[ TIPS & TRICKS OF THE WEEK]

Data Analytics Success Starts with Empowerment
Being Data Driven is not as much of a tech challenge as it is an adoption challenge. Adoption has it’s root in cultural DNA of any organization. Great data driven organizations rungs the data driven culture into the corporate DNA. A culture of connection, interactions, sharing and collaboration is what it takes to be data driven. Its about being empowered more than its about being educated.

[ DATA SCIENCE Q&A]

Q:Compare R and Python
A: R
– Focuses on better, user friendly data analysis, statistics and graphical models
– The closer you are to statistics, data science and research, the more you might prefer R
– Statistical models can be written with only a few lines in R
– The same piece of functionality can be written in several ways in R
– Mainly used for standalone computing or analysis on individual servers
– Large number of packages, for anything!

Python
– Used by programmers that want to delve into data science
– The closer you are working in an engineering environment, the more you might prefer Python
– Coding and debugging is easier mainly because of the nice syntax
– Any piece of functionality is always written the same way in Python
– When data analysis needs to be implemented with web apps
– Good tool to implement algorithms for production use

Source

[ VIDEO OF THE WEEK]

Making sense of unstructured data by turning strings into things

 Making sense of unstructured data by turning strings into things

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data are becoming the new raw material of business. – Craig Mundie

[ PODCAST OF THE WEEK]

Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

 Understanding #BigData #BigOpportunity in Big HR by @MarcRind #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

By 2020, at least a third of all data will pass through the cloud (a network of servers connected over the Internet).

Sourced from: Analytics.CLUB #WEB Newsletter

Aug 02, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Pacman  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Better than Master Data Management: Building the Ultimate Customer 360 with Artificial Intelligence by jelaniharper

>> Eradicating Silos Forever with Linked Enterprise Data by jelaniharper

>> December 26, 2016 Health and Biotech analytics news roundup by pstein

Wanna write? Click Here

[ NEWS BYTES]

>>
 Collision Course: Foreign Influence Operations, Data Security and Privacy – Lexology Under  Data Security

>>
 euNetworks brings data center interconnect services to Dublin and Hilversum – LightWave Online Under  Data Center

>>
 Syllabus for a course on Data Science Ethics – Boing Boing Under  Data Science

More NEWS ? Click Here

[ FEATURED COURSE]

Pattern Discovery in Data Mining

image

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern disc… more

[ FEATURED READ]

Big Data: A Revolution That Will Transform How We Live, Work, and Think

image

“Illuminating and very timely . . . a fascinating — and sometimes alarming — survey of big data’s growing effect on just about everything: business, government, science and medicine, privacy, and even on the way we think… more

[ TIPS & TRICKS OF THE WEEK]

Grow at the speed of collaboration
A research by Cornerstone On Demand pointed out the need for better collaboration within workforce, and data analytics domain is no different. A rapidly changing and growing industry like data analytics is very difficult to catchup by isolated workforce. A good collaborative work-environment facilitate better flow of ideas, improved team dynamics, rapid learning, and increasing ability to cut through the noise. So, embrace collaborative team dynamics.

[ DATA SCIENCE Q&A]

Q:What is the maximal margin classifier? How this margin can be achieved?
A: * When the data can be perfectly separated using a hyperplane, there actually exists an infinite number of these hyperplanes
* Intuition: a hyperplane can usually be shifted a tiny bit up, or down, or rotated, without coming into contact with any of the observations
* Large margin classifier: choosing the hyperplance that is farthest from the training observations
* This margin can be achieved using support vectors

Source

[ VIDEO OF THE WEEK]

@chrisbishop on futurist's lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

 @chrisbishop on futurist’s lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

It’s easy to lie with statistics. It’s hard to tell the truth without statistics. – Andrejs Dunkels

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Joe DeCosmo, @Enova

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Joe DeCosmo, @Enova

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

94% of Hadoop users perform analytics on large volumes of data not possible before; 88% analyze data in greater detail; while 82% can now retain more of their data.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 26, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Tour of Accounting  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> 66 job interview questions for data scientists by analyticsweekpick

>> @JohnNives on ways to demystify AI for enterprise #FutureOfData by admin

>> The Value of Enterprise Feedback Management Vendors by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 7 Things Lawyers Should Know About Artificial Intelligence – Above the Law Under  Artificial Intelligence

>>
 Cyber security shorts: Daniel Schatz, Perform Group – IBC365 Under  cyber security

>>
 Cloud is not a commodity – avoiding the ‘Cloud Trap’ – ITProPortal Under  Cloud

More NEWS ? Click Here

[ FEATURED COURSE]

R Basics – R Programming Language Introduction

image

Learn the essentials of R Programming – R Beginner Level!… more

[ FEATURED READ]

Big Data: A Revolution That Will Transform How We Live, Work, and Think

image

“Illuminating and very timely . . . a fascinating — and sometimes alarming — survey of big data’s growing effect on just about everything: business, government, science and medicine, privacy, and even on the way we think… more

[ TIPS & TRICKS OF THE WEEK]

Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.

[ DATA SCIENCE Q&A]

Q:What are confounding variables?
A: * Extraneous variable in a statistical model that correlates directly or inversely with both the dependent and the independent variable
* A spurious relationship is a perceived relationship between an independent variable and a dependent variable that has been estimated incorrectly
* The estimate fails to account for the confounding factor

Source

[ VIDEO OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

The most valuable commodity I know of is information. – Gordon Gekko

[ PODCAST OF THE WEEK]

@TimothyChou on World of #IOT & Its #Future Part 1 #FutureOfData #Podcast

 @TimothyChou on World of #IOT & Its #Future Part 1 #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

140,000 to 190,000. Too few people with deep analytical skills to fill the demand of Big Data jobs in the U.S. by 2018.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 19, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Complex data  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ NEWS BYTES]

>>
 Protecting data in a hybrid cloud environment | Network World – Network World Under  Hybrid Cloud

>>
 Big Four Vs of Big Data – BW Businessworld Under  Big Data

>>
 Sr. Marketing Analyst – United States – Built In Austin Under  Marketing Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

CS109 Data Science

image

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data managem… more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.

[ DATA SCIENCE Q&A]

Q:Explain Tufte’s concept of ‘chart junk’?
A: All visuals elements in charts and graphs that are not necessary to comprehend the information represented, or that distract the viewer from this information

Examples of unnecessary elements include:
– Unnecessary text
– Heavy or dark grid lines
– Ornamented chart axes
– Pictures
– Background
– Unnecessary dimensions
– Elements depicted out of scale to one another
– 3-D simulations in line or bar charts

Source

[ VIDEO OF THE WEEK]

Pascal Marmier (@pmarmier) @SwissRe discusses running data driven innovation catalyst

 Pascal Marmier (@pmarmier) @SwissRe discusses running data driven innovation catalyst

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Without big data, you are blind and deaf and in the middle of a freeway. – Geoffrey Moore

[ PODCAST OF THE WEEK]

@TimothyChou on World of #IOT & Its #Future Part 1 #FutureOfData #Podcast

 @TimothyChou on World of #IOT & Its #Future Part 1 #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

A quarter of decision-makers surveyed predict that data volumes in their companies will rise by more than 60 per cent by the end of 2014, with the average of all respondents anticipating a growth of no less than 42 per cent.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 12, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Statistically Significant  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> 4 Ways Big Data Will Change Every Business by analyticsweekpick

>> 3 Emerging Big Data Careers in an IoT-Focused World by kmartin

>> Analyzing Big Data: A Customer-Centric Approach by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 Global Data Analytics Outsourcing Market- By Key Players, Type, Application, Region, and Forecast 2018-2025 – City Councilor Under  Financial Analytics

>>
 Briggs And Stratton Hiring For 65 Jobs In Wauwatosa – Patch.com Under  Sales Analytics

>>
 Daunting challenges of data security and privacy & how AI comes to rescue – Analytics India Magazine Under  Data Security

More NEWS ? Click Here

[ FEATURED COURSE]

Pattern Discovery in Data Mining

image

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern disc… more

[ FEATURED READ]

Hypothesis Testing: A Visual Introduction To Statistical Significance

image

Statistical significance is a way of determining if an outcome occurred by random chance, or did something cause that outcome to be different than the expected baseline. Statistical significance calculations find their … more

[ TIPS & TRICKS OF THE WEEK]

Data aids, not replace judgement
Data is a tool and means to help build a consensus to facilitate human decision-making but not replace it. Analysis converts data into information, information via context leads to insight. Insights lead to decision making which ultimately leads to outcomes that brings value. So, data is just the start, context and intuition plays a role.

[ DATA SCIENCE Q&A]

Q:How do you take millions of users with 100’s transactions each, amongst 10k’s of products and group the users together in meaningful segments?
A: 1. Some exploratory data analysis (get a first insight)

* Transactions by date
* Count of customers Vs number of items bought
* Total items Vs total basket per customer
* Total items Vs total basket per area

2.Create new features (per customer):

Counts:

* Total baskets (unique days)
* Total items
* Total spent
* Unique product id

Distributions:

* Items per basket
* Spent per basket
* Product id per basket
* Duration between visits
* Product preferences: proportion of items per product cat per basket

3. Too many features, dimension-reduction? PCA?

4. Clustering:

* PCA

5. Interpreting model fit
* View the clustering by principal component axis pairs PC1 Vs PC2, PC2 Vs PC1.
* Interpret each principal component regarding the linear combination it’s obtained from; example: PC1=spendy axis (proportion of baskets containing spendy items, raw counts of items and visits)

Source

[ VIDEO OF THE WEEK]

@JohnTLangton from @Wolters_Kluwer discussed his #AI Lead Startup Journey #FutureOfData #Podcast

 @JohnTLangton from @Wolters_Kluwer discussed his #AI Lead Startup Journey #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

We chose it because we deal with huge amounts of data. Besides, it sounds really cool. – Larry Page

[ PODCAST OF THE WEEK]

@CRGutowski from @GE_Digital on Using #Analytics to #Transform Sales #FutureOfData #Podcast

 @CRGutowski from @GE_Digital on Using #Analytics to #Transform Sales #FutureOfData #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Big data is a top business priority and drives enormous opportunity for business improvement. Wikibon’s own study projects that big data will be a $50 billion business by 2017.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 05, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Tour of Accounting  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ NEWS BYTES]

>>
 NIH Data Science Plan Aims to Boost Data Analytics, Access – Health IT Analytics Under  Health Analytics

>>
 Much More Than Toys – Why Organizations Need to Industrialize the Data Science Playground – Datamation Under  Data Science

>>
 ‘Sexiest job’ ignites talent wars as demand for data geeks soars – Chicago Tribune Under  Data Scientist

More NEWS ? Click Here

[ FEATURED COURSE]

Pattern Discovery in Data Mining

image

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern disc… more

[ FEATURED READ]

The Future of the Professions: How Technology Will Transform the Work of Human Experts

image

This book predicts the decline of today’s professions and describes the people and systems that will replace them. In an Internet society, according to Richard Susskind and Daniel Susskind, we will neither need nor want … more

[ TIPS & TRICKS OF THE WEEK]

Strong business case could save your project
Like anything in corporate culture, the project is oftentimes about the business, not the technology. With data analysis, the same type of thinking goes. It’s not always about the technicality but about the business implications. Data science project success criteria should include project management success criteria as well. This will ensure smooth adoption, easy buy-ins, room for wins and co-operating stakeholders. So, a good data scientist should also possess some qualities of a good project manager.

[ DATA SCIENCE Q&A]

Q:Provide examples of machine-to-machine communications?
A: Telemedicine
– Heart patients wear specialized monitor which gather information regarding heart state
– The collected data is sent to an electronic implanted device which sends back electric shocks to the patient for correcting incorrect rhythms

Product restocking
– Vending machines are capable of messaging the distributor whenever an item is running out of stock

Source

[ VIDEO OF THE WEEK]

@chrisbishop on futurist's lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

 @chrisbishop on futurist’s lens on #JobsOfFuture #FutureofWork #JobsOfFuture #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Data beats emotions. – Sean Rad, founder of Ad.ly

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with  John Young, @Epsilonmktg

 #BigData @AnalyticsWeek #FutureOfData #Podcast with John Young, @Epsilonmktg

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

IDC Estimates that by 2020,business transactions on the internet- business-to-business and business-to-consumer – will reach 450 billion per day.

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 28, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Accuracy check  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Map of US Hospitals and their Process of Care Metrics by bobehayes

>> February 27, 2017 Health and Biotech analytics news roundup by pstein

>> Big data analytics startup Sqrrl raises $7M by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Lessons learnt from machine learning in fraud management – Enterprise Innovation Under  Machine Learning

>>
 Northrop Grumman in $7.3M defense contract for ‘machine learning … – Newsday Under  Machine Learning

>>
 The Vaping World: How Many Vapers Are There? – Vaping Daily (blog) Under  Statistics

More NEWS ? Click Here

[ FEATURED COURSE]

Deep Learning Prerequisites: The Numpy Stack in Python

image

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence… more

[ FEATURED READ]

Rise of the Robots: Technology and the Threat of a Jobless Future

image

What are the jobs of the future? How many will there be? And who will have them? As technology continues to accelerate and machines begin taking care of themselves, fewer people will be necessary. Artificial intelligence… more

[ TIPS & TRICKS OF THE WEEK]

Data aids, not replace judgement
Data is a tool and means to help build a consensus to facilitate human decision-making but not replace it. Analysis converts data into information, information via context leads to insight. Insights lead to decision making which ultimately leads to outcomes that brings value. So, data is just the start, context and intuition plays a role.

[ DATA SCIENCE Q&A]

Q:Compare R and Python
A: R
– Focuses on better, user friendly data analysis, statistics and graphical models
– The closer you are to statistics, data science and research, the more you might prefer R
– Statistical models can be written with only a few lines in R
– The same piece of functionality can be written in several ways in R
– Mainly used for standalone computing or analysis on individual servers
– Large number of packages, for anything!

Python
– Used by programmers that want to delve into data science
– The closer you are working in an engineering environment, the more you might prefer Python
– Coding and debugging is easier mainly because of the nice syntax
– Any piece of functionality is always written the same way in Python
– When data analysis needs to be implemented with web apps
– Good tool to implement algorithms for production use

Source

[ VIDEO OF THE WEEK]

Decision-Making: The Last Mile of Analytics and Visualization

 Decision-Making: The Last Mile of Analytics and Visualization

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Without big data, you are blind and deaf and in the middle of a freeway. – Geoffrey Moore

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Dr. Nipa Basu, @DnBUS

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Dr. Nipa Basu, @DnBUS

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Facebook stores, accesses, and analyzes 30+ Petabytes of user generated data.

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 21, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data Storage  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Two More Customer Experience Facts and Suggestions You Can’t Ignore [INFOGRAPHIC] by bobehayes

>> What Is a Residential IP, Data Center Proxy and what are the Differences? by thomassujain

>> Ashok Srivastava(@aerotrekker) @Intuit on Winning the Art of #DataScience #FutureOfData #Podcast by admin

Wanna write? Click Here

[ NEWS BYTES]

>>
 Global BPO Business Analytics Market Share 2018 WNS Global … – The Mobile Herald Under  Business Analytics

>>
 Fund Me, KC: WISE IoT tech aims to lower energy bills, decrease carbon footprint – Startland News Under  IOT

>>
 Can State-of-the-Art Machine Learning Tools Give New Life to Household Survey Data? – Modern Diplomacy Under  Machine Learning

More NEWS ? Click Here

[ FEATURED COURSE]

Deep Learning Prerequisites: The Numpy Stack in Python

image

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence… more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.

[ DATA SCIENCE Q&A]

Q:What is the life cycle of a data science project ?
A: 1. Data acquisition
Acquiring data from both internal and external sources, including social media or web scraping. In a steady state, data extraction and routines should be in place, and new sources, once identified would be acquired following the established processes

2. Data preparation
Also called data wrangling: cleaning the data and shaping it into a suitable form for later analyses. Involves exploratory data analysis and feature extraction.

3. Hypothesis & modelling
Like in data mining but not with samples, with all the data instead. Applying machine learning techniques to all the data. A key sub-step: model selection. This involves preparing a training set for model candidates, and validation and test sets for comparing model performances, selecting the best performing model, gauging model accuracy and preventing overfitting

4. Evaluation & interpretation

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

5. Deployment

6. Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

7. Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Source

[ VIDEO OF THE WEEK]

Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

 Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

The goal is to turn data into information, and information into insight. – Carly Fiorina

[ PODCAST OF THE WEEK]

Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

 Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

73% of organizations have already invested or plan to invest in big data by 2016

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 14, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Complex data  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ NEWS BYTES]

>>
 I want to be a data scientist … what will my salary be? – The Globe and Mail Under  Data Scientist

>>
 The Impact of Empathy On Data Security And Productivity – Forbes Under  Data Security

>>
 Social Media Content Producer – Pedestrian TV Under  Social Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Hadoop Starter Kit

image

Hadoop learning made easy and fun. Learn HDFS, MapReduce and introduction to Pig and Hive with FREE cluster access…. more

[ FEATURED READ]

The Signal and the Noise: Why So Many Predictions Fail–but Some Don’t

image

People love statistics. Statistics, however, do not always love them back. The Signal and the Noise, Nate Silver’s brilliant and elegant tour of the modern science-slash-art of forecasting, shows what happens when Big Da… more

[ TIPS & TRICKS OF THE WEEK]

Save yourself from zombie apocalypse from unscalable models
One living and breathing zombie in today’s analytical models is the pulsating absence of error bars. Not every model is scalable or holds ground with increasing data. Error bars that is tagged to almost every models should be duly calibrated. As business models rake in more data the error bars keep it sensible and in check. If error bars are not accounted for, we will make our models susceptible to failure leading us to halloween that we never wants to see.

[ DATA SCIENCE Q&A]

Q:Do you think 50 small decision trees are better than a large one? Why?
A: * Yes!
* More robust model (ensemble of weak learners that come and make a strong learner)
* Better to improve a model by taking many small steps than fewer large steps
* If one tree is erroneous, it can be auto-corrected by the following
* Less prone to overfitting

Source

[ VIDEO OF THE WEEK]

Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

 Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

If you can’t explain it simply, you don’t understand it well enough. – Albert Einstein

[ PODCAST OF THE WEEK]

Nick Howe (@Area9Nick @Area9Learning) talks about fabric of learning organization to bring #JobsOfFuture #Podcast

 Nick Howe (@Area9Nick @Area9Learning) talks about fabric of learning organization to bring #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

According to execs, the influx of data is putting a strain on IT infrastructure. 55 percent of respondents reporting a slowdown of IT systems and 47 percent citing data security problems, according to a global survey from Avanade.

Sourced from: Analytics.CLUB #WEB Newsletter