Aug 17, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Accuracy  Source

[ AnalyticsWeek BYTES]

>> SAS Pushes Big Data, Analytics for Cybersecurity by analyticsweekpick

>> Four Use Cases for Healthcare Predictive Analytics, Big Data by analyticsweekpick

>> The Question to Ask Before Hiring a Data Scientist by michael-li

Wanna write? Click Here

[ NEWS BYTES]

>>
 Robin Systems’ Container-Based Virtualization Platform for Applications – Virtualization Review Under  Virtualization

>>
 Research delivers insight into the global business analytics and enterprise software market forecast to 2022 – WhaTech Under  Business Analytics

>>
 Creating smart spaces: Five steps to transform your workplace with IoT – TechTarget (blog) Under  IOT

More NEWS ? Click Here

[ FEATURED COURSE]

Deep Learning Prerequisites: The Numpy Stack in Python

image

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence… more

[ FEATURED READ]

Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 4th Edition

image

The eagerly anticipated Fourth Edition of the title that pioneered the comparison of qualitative, quantitative, and mixed methods research design is here! For all three approaches, Creswell includes a preliminary conside… more

[ TIPS & TRICKS OF THE WEEK]

Strong business case could save your project
Like anything in corporate culture, the project is oftentimes about the business, not the technology. With data analysis, the same type of thinking goes. It’s not always about the technicality but about the business implications. Data science project success criteria should include project management success criteria as well. This will ensure smooth adoption, easy buy-ins, room for wins and co-operating stakeholders. So, a good data scientist should also possess some qualities of a good project manager.

[ DATA SCIENCE Q&A]

Q:Why is naive Bayes so bad? How would you improve a spam detection algorithm that uses naive Bayes?
A: Naïve: the features are assumed independent/uncorrelated
Assumption not feasible in many cases
Improvement: decorrelate features (covariance matrix into identity matrix)

Source

[ VIDEO OF THE WEEK]

#HumansOfSTEAM feat. Hussain Gadwal, Mechanical Designer via @STEAMTribe #STEM #STEAM

 #HumansOfSTEAM feat. Hussain Gadwal, Mechanical Designer via @STEAMTribe #STEM #STEAM

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Everybody gets so much information all day long that they lose their common sense. – Gertrude Stein

[ PODCAST OF THE WEEK]

#FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

 #FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

In late 2011, IDC Digital Universe published a report indicating that some 1.8 zettabytes of data will be created that year.

Sourced from: Analytics.CLUB #WEB Newsletter

Aug 10, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Productivity  Source

[ AnalyticsWeek BYTES]

>> Important Strategies to Enhance Big Data Access by thomassujain

>> Predictive Workforce Analytics Studies: Do Development Programs Help Increase Performance Over Time? by groberts

>> How to file a patent by v1shal

Wanna write? Click Here

[ NEWS BYTES]

>>
 NTT Com plans to invest over $160 million for data center expansion in India – ETCIO.com Under  Data Center

>>
 Goergen Institute for Data Science provides new opportunities for … – University of Rochester Newsroom Under  Data Science

>>
 Hints of iPhone 8 Showing Up in Web Analytics – Mac Rumors Under  Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

CS109 Data Science

image

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data managem… more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Save yourself from zombie apocalypse from unscalable models
One living and breathing zombie in today’s analytical models is the pulsating absence of error bars. Not every model is scalable or holds ground with increasing data. Error bars that is tagged to almost every models should be duly calibrated. As business models rake in more data the error bars keep it sensible and in check. If error bars are not accounted for, we will make our models susceptible to failure leading us to halloween that we never wants to see.

[ DATA SCIENCE Q&A]

Q:What is: lift, KPI, robustness, model fitting, design of experiments, 80/20 rule?
A: Lift:
It’s measure of performance of a targeting model (or a rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model. Lift is simply: target response/average response.

Suppose a population has an average response rate of 5% (mailing for instance). A certain model (or rule) has identified a segment with a response rate of 20%, then lift=20/5=4

Typically, the modeler seeks to divide the population into quantiles, and rank the quantiles by lift. He can then consider each quantile, and by weighing the predicted response rate against the cost, he can decide to market that quantile or not.
“if we use the probability scores on customers, we can get 60% of the total responders we’d get mailing randomly by only mailing the top 30% of the scored customers”.

KPI:
– Key performance indicator
– A type of performance measurement
– Examples: 0 defects, 10/10 customer satisfaction
– Relies upon a good understanding of what is important to the organization

More examples:

Marketing & Sales:
– New customers acquisition
– Customer attrition
– Revenue (turnover) generated by segments of the customer population
– Often done with a data management platform

IT operations:
– Mean time between failure
– Mean time to repair

Robustness:
– Statistics with good performance even if the underlying distribution is not normal
– Statistics that are not affected by outliers
– A learning algorithm that can reduce the chance of fitting noise is called robust
– Median is a robust measure of central tendency, while mean is not
– Median absolute deviation is also more robust than the standard deviation

Model fitting:
– How well a statistical model fits a set of observations
– Examples: AIC, R2, Kolmogorov-Smirnov test, Chi 2, deviance (glm)

Design of experiments:
The design of any task that aims to describe or explain the variation of information under conditions that are hypothesized to reflect the variation.
In its simplest form, an experiment aims at predicting the outcome by changing the preconditions, the predictors.
– Selection of the suitable predictors and outcomes
– Delivery of the experiment under statistically optimal conditions
– Randomization
– Blocking: an experiment may be conducted with the same equipment to avoid any unwanted variations in the input
– Replication: performing the same combination run more than once, in order to get an estimate for the amount of random error that could be part of the process
– Interaction: when an experiment has 3 or more variables, the situation in which the interaction of two variables on a third is not additive

80/20 rule:
– Pareto principle
– 80% of the effects come from 20% of the causes
– 80% of your sales come from 20% of your clients
– 80% of a company complaints come from 20% of its customers

Source

[ VIDEO OF THE WEEK]

Surviving Internet of Things

 Surviving Internet of Things

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

He uses statistics as a drunken man uses lamp posts—for support rather than for illumination. – Andrew Lang

[ PODCAST OF THE WEEK]

Using Analytics to build A #BigData #Workforce

 Using Analytics to build A #BigData #Workforce

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

39 percent of marketers say that their data is collected ‘too infrequently or not real-time enough.’

Sourced from: Analytics.CLUB #WEB Newsletter

Aug 03, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Productivity  Source

[ AnalyticsWeek BYTES]

>> Periodic Table Personified [image] by v1shal

>> How to Win Business using Marketing Data [infographics] by v1shal

>> October 31, 2016 Health and Biotech analytics news roundup by pstein

Wanna write? Click Here

[ NEWS BYTES]

>>
 Israeli cyber co Waterfall teams with insurance specialists – Globes Under  cyber security

>>
 Call Centers, Listen Up: 3 Steps to Define the Customer Experience at “Hello” – Customer Think Under  Customer Experience

>>
 Australian companies spending up on big data in 2017 – ChannelLife Australia Under  Big Data Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

CS109 Data Science

image

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data managem… more

[ FEATURED READ]

The Signal and the Noise: Why So Many Predictions Fail–but Some Don’t

image

People love statistics. Statistics, however, do not always love them back. The Signal and the Noise, Nate Silver’s brilliant and elegant tour of the modern science-slash-art of forecasting, shows what happens when Big Da… more

[ TIPS & TRICKS OF THE WEEK]

Finding a success in your data science ? Find a mentor
Yes, most of us dont feel a need but most of us really could use one. As most of data science professionals work in their own isolations, getting an unbiased perspective is not easy. Many times, it is also not easy to understand how the data science progression is going to be. Getting a network of mentors address these issues easily, it gives data professionals an outside perspective and unbiased ally. It’s extremely important for successful data science professionals to build a mentor network and use it through their success.

[ DATA SCIENCE Q&A]

Q:Explain the difference between “long” and “wide” format data. Why would you use one or the other?
A: * Long: one column containing the values and another column listing the context of the value Fam_id year fam_inc

* Wide: each different variable in a separate column
Fam_id fam_inc96 fam_inc97 fam_inc98

Long Vs Wide:
– Data manipulations are much easier when data is in the wide format: summarize, filter
– Program requirements

Source

[ VIDEO OF THE WEEK]

Discussing Forecasting with Brett McLaughlin (@akabret), @Akamai

 Discussing Forecasting with Brett McLaughlin (@akabret), @Akamai

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Getting information off the Internet is like taking a drink from a firehose. – Mitchell Kapor

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with @MPFlowersNYC, @enigma_data

 #BigData @AnalyticsWeek #FutureOfData #Podcast with @MPFlowersNYC, @enigma_data

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

In 2015, a staggering 1 trillion photos will be taken and billions of them will be shared online. By 2017, nearly 80% of photos will be taken on smart phones.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 27, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data Mining  Source

[ AnalyticsWeek BYTES]

>> March 13, 2017 Health and Biotech analytics news roundup by pstein

>> Jun 01, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..) by admin

>> What “Gangnam Style” could teach about branding: 5 Lessons by d3eksha

Wanna write? Click Here

[ NEWS BYTES]

>>
 Apple selloff a boon to short sellers – Times of India Under  Financial Analytics

>>
 Cloud Security Is Not an Either/Or – Security Intelligence (blog) Under  Cloud Security

>>
 Don’t develop for hybrid cloud without hybrid deployment – ComputerWeekly.com (blog) Under  Hybrid Cloud

More NEWS ? Click Here

[ FEATURED COURSE]

Process Mining: Data science in Action

image

Process mining is the missing link between model-based process analysis and data-oriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be ap… more

[ FEATURED READ]

Data Science from Scratch: First Principles with Python

image

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn … more

[ TIPS & TRICKS OF THE WEEK]

Analytics Strategy that is Startup Compliant
With right tools, capturing data is easy but not being able to handle data could lead to chaos. One of the most reliable startup strategy for adopting data analytics is TUM or The Ultimate Metric. This is the metric that matters the most to your startup. Some advantages of TUM: It answers the most important business question, it cleans up your goals, it inspires innovation and helps you understand the entire quantified business.

[ DATA SCIENCE Q&A]

Q:What are the drawbacks of linear model? Are you familiar with alternatives (Lasso, ridge regression)?
A: * Assumption of linearity of the errors
* Can’t be used for count outcomes, binary outcomes
* Can’t vary model flexibility: overfitting problems
* Alternatives: see question 4 about regularization

Source

[ VIDEO OF THE WEEK]

The History and Use of R

 The History and Use of R

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

The goal is to turn data into information, and information into insight. – Carly Fiorina

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Walmart handles more than 1 million customer transactions every hour, which is imported into databases estimated to contain more than 2.5 petabytes of data.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 20, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data security  Source

[ AnalyticsWeek BYTES]

>> Please share your thoughts about Steve Jobs by bobehayes

>> How Big Data Has Changed Finance by anum

>> 6 Customer Experience Practices of Loyalty Leaders by bobehayes

Wanna write? Click Here

[ NEWS BYTES]

>>
 ‘Internet of Things’ is vulnerable to hackers – Minneapolis Star Tribune Under  Internet Of Things

>>
 TensorFlow to Hadoop By Way of Datameer – Datanami Under  Hadoop

>>
 HR and IT combine efforts on workforce analytics – CIO Under  Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Hadoop Starter Kit

image

Hadoop learning made easy and fun. Learn HDFS, MapReduce and introduction to Pig and Hive with FREE cluster access…. more

[ FEATURED READ]

Hypothesis Testing: A Visual Introduction To Statistical Significance

image

Statistical significance is a way of determining if an outcome occurred by random chance, or did something cause that outcome to be different than the expected baseline. Statistical significance calculations find their … more

[ TIPS & TRICKS OF THE WEEK]

Data Have Meaning
We live in a Big Data world in which everything is quantified. While the emphasis of Big Data has been focused on distinguishing the three characteristics of data (the infamous three Vs), we need to be cognizant of the fact that data have meaning. That is, the numbers in your data represent something of interest, an outcome that is important to your business. The meaning of those numbers is about the veracity of your data.

[ DATA SCIENCE Q&A]

Q:What are confounding variables?
A: * Extraneous variable in a statistical model that correlates directly or inversely with both the dependent and the independent variable
* A spurious relationship is a perceived relationship between an independent variable and a dependent variable that has been estimated incorrectly
* The estimate fails to account for the confounding factor

Source

[ VIDEO OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Dr. Nipa Basu, @DnBUS

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Dr. Nipa Basu, @DnBUS

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

He uses statistics as a drunken man uses lamp posts—for support rather than for illumination. – Andrew Lang

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData with Jon Gibs(@jonathangibs) @L2_Digital

 #BigData @AnalyticsWeek #FutureOfData with Jon Gibs(@jonathangibs) @L2_Digital

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Estimates suggest that by better integrating big data, healthcare could save as much as $300 billion a year — that’s equal to reducing costs by $1000 a year for every man, woman, and child.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 13, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Accuracy check  Source

[ NEWS BYTES]

>>
 Using Emojis to Boost Sentiment Analysis – Datanami Under  Sentiment Analysis

>>
 Software-defined secure networking is ideal for hybrid cloud security – CyberScoop Under  Hybrid Cloud

>>
 Why Big Data Wasn’t Trump’s Achilles Heel After All – Forbes Under  Big Data Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Introduction to Apache Spark

image

Learn the fundamentals and architecture of Apache Spark, the leading cluster-computing framework among professionals…. more

[ FEATURED READ]

Introduction to Graph Theory (Dover Books on Mathematics)

image

A stimulating excursion into pure mathematics aimed at “the mathematically traumatized,” but great fun for mathematical hobbyists and serious mathematicians as well. Requiring only high school algebra as mathematical bac… more

[ TIPS & TRICKS OF THE WEEK]

Strong business case could save your project
Like anything in corporate culture, the project is oftentimes about the business, not the technology. With data analysis, the same type of thinking goes. It’s not always about the technicality but about the business implications. Data science project success criteria should include project management success criteria as well. This will ensure smooth adoption, easy buy-ins, room for wins and co-operating stakeholders. So, a good data scientist should also possess some qualities of a good project manager.

[ DATA SCIENCE Q&A]

Q:What is latent semantic indexing? What is it used for? What are the specific limitations of the method?
A: * Indexing and retrieval method that uses singular value decomposition to identify patterns in the relationships between the terms and concepts contained in an unstructured collection of text
* Based on the principle that words that are used in the same contexts tend to have similar meanings
* “Latent”: semantic associations between words is present not explicitly but only latently
* For example: two synonyms may never occur in the same passage but should nonetheless have highly associated representations

Used for:

* Learning correct word meanings
* Subject matter comprehension
* Information retrieval
* Sentiment analysis (social network analysis)

Source

[ VIDEO OF THE WEEK]

@AnalyticsWeek: Big Data at Work: Paul Sonderegger

 @AnalyticsWeek: Big Data at Work: Paul Sonderegger

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

You can use all the quantitative data you can get, but you still have to distrust it and use your own intelligence and judgment. – Alvin Tof

[ PODCAST OF THE WEEK]

#FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

 #FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

Facebook users send on average 31.25 million messages and view 2.77 million videos every minute.

Sourced from: Analytics.CLUB #WEB Newsletter

Jul 06, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Statistics  Source

[ AnalyticsWeek BYTES]

>> Big Data Provides Big Insights for U.S. Hospitals by bobehayes

>> 3 S for Building Big Data Analytics Tool of the Future by v1shal

>> Untangling Big Data for Digital Marketing by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Insurers turn to outsourcing to shore up data security – Information Management Under  Data Security

>>
 Clarabridge Dials Up Customer Connections | CustomerThink – Customer Think Under  Sentiment Analysis

>>
 RISELab Takes Flight at UC Berkeley – Datanami Under  Big Data Security

More NEWS ? Click Here

[ FEATURED COURSE]

Statistical Thinking and Data Analysis

image

This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and n… more

[ FEATURED READ]

Introduction to Graph Theory (Dover Books on Mathematics)

image

A stimulating excursion into pure mathematics aimed at “the mathematically traumatized,” but great fun for mathematical hobbyists and serious mathematicians as well. Requiring only high school algebra as mathematical bac… more

[ TIPS & TRICKS OF THE WEEK]

Data Analytics Success Starts with Empowerment
Being Data Driven is not as much of a tech challenge as it is an adoption challenge. Adoption has it’s root in cultural DNA of any organization. Great data driven organizations rungs the data driven culture into the corporate DNA. A culture of connection, interactions, sharing and collaboration is what it takes to be data driven. Its about being empowered more than its about being educated.

[ DATA SCIENCE Q&A]

Q:Why is naive Bayes so bad? How would you improve a spam detection algorithm that uses naive Bayes?
A: Naïve: the features are assumed independent/uncorrelated
Assumption not feasible in many cases
Improvement: decorrelate features (covariance matrix into identity matrix)

Source

[ VIDEO OF THE WEEK]

Agile Data Warehouse Design for Big Data Presentation

 Agile Data Warehouse Design for Big Data Presentation

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

Big Data is not the new oil. – Jer Thorp

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with @DavidRose, @DittoLabs

 #BigData @AnalyticsWeek #FutureOfData #Podcast with @DavidRose, @DittoLabs

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

235 Terabytes of data has been collected by the U.S. Library of Congress in April 2011.

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 29, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Insights  Source

[ NEWS BYTES]

>>
 Defense contractor stored intelligence data in Amazon cloud unprotected – Ars Technica Under  Cloud

>>
 Qatar firms can meet hybrid cloud challenges – Peninsula On-line Under  Hybrid Cloud

>>
 The tricky, personal politics of cloud security | Network World – Network World Under  Cloud Security

More NEWS ? Click Here

[ FEATURED COURSE]

Lean Analytics Workshop – Alistair Croll and Ben Yoskovitz

image

Use data to build a better startup faster in partnership with Geckoboard… more

[ FEATURED READ]

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

image

In the world’s top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. In The Mast… more

[ TIPS & TRICKS OF THE WEEK]

Data Have Meaning
We live in a Big Data world in which everything is quantified. While the emphasis of Big Data has been focused on distinguishing the three characteristics of data (the infamous three Vs), we need to be cognizant of the fact that data have meaning. That is, the numbers in your data represent something of interest, an outcome that is important to your business. The meaning of those numbers is about the veracity of your data.

[ DATA SCIENCE Q&A]

Q:How frequently an algorithm must be updated?
A: You want to update an algorithm when:
– You want the model to evolve as data streams through infrastructure
– The underlying data source is changing
– Example: a retail store model that remains accurate as the business grows
– Dealing with non-stationarity

Some options:
– Incremental algorithms: the model is updated every time it sees a new training example
Note: simple, you always have an up-to-date model but you can’t incorporate data to different degrees.
Sometimes mandatory: when data must be discarded once seen (privacy)
– Periodic re-training in “batch” mode: simply buffer the relevant data and update the model every-so-often
Note: more decisions and more complex implementations

How frequently?
– Is the sacrifice worth it?
– Data horizon: how quickly do you need the most recent training example to be part of your model?
– Data obsolescence: how long does it take before data is irrelevant to the model? Are some older instances
more relevant than the newer ones?
Economics: generally, newer instances are more relevant than older ones. However, data from the same month, quarter or year of the last year can be more relevant than the same periods of the current year. In a recession period: data from previous recessions can be more relevant than newer data from different economic cycles.

Source

[ VIDEO OF THE WEEK]

Decision-Making: The Last Mile of Analytics and Visualization

 Decision-Making: The Last Mile of Analytics and Visualization

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

He uses statistics as a drunken man uses lamp posts—for support rather than for illumination. – Andrew Lang

[ PODCAST OF THE WEEK]

#FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

 #FutureOfData Podcast: Conversation With Sean Naismith, Enova Decisions

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

More than 200bn HD movies – which would take a person 47m years to watch.

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 22, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Extrapolating  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Understanding Customer Buying Journey with Big Data by v1shal

>> The Differences Between a Business Analyst & a Data Analyst by anum

>> What Are the 3 Critical Keys to Healthcare Big Data Analytics? by analyticsweekpick

Wanna write? Click Here

[ NEWS BYTES]

>>
 Traders are loading up on bets against China Evergrande Group … – Business Insider Under  Financial Analytics

>>
 Machine Learning Techniques for Predictive Maintenance – InfoQ.com Under  Machine Learning

>>
 Accepting What You Don’t Know Is Crucial to Detecting Risk – American Banker Under  Risk Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Learning from data: Machine learning course

image

This is an introductory course in machine learning (ML) that covers the basic theory, algorithms, and applications. ML is a key technology in Big Data, and in many financial, medical, commercial, and scientific applicati… more

[ FEATURED READ]

Hypothesis Testing: A Visual Introduction To Statistical Significance

image

Statistical significance is a way of determining if an outcome occurred by random chance, or did something cause that outcome to be different than the expected baseline. Statistical significance calculations find their … more

[ TIPS & TRICKS OF THE WEEK]

Fix the Culture, spread awareness to get awareness
Adoption of analytics tools and capabilities has not yet caught up to industry standards. Talent has always been the bottleneck towards achieving the comparative enterprise adoption. One of the primal reason is lack of understanding and knowledge within the stakeholders. To facilitate wider adoption, data analytics leaders, users, and community members needs to step up to create awareness within the organization. An aware organization goes a long way in helping get quick buy-ins and better funding which ultimately leads to faster adoption. So be the voice that you want to hear from leadership.

[ DATA SCIENCE Q&A]

Q:What is the maximal margin classifier? How this margin can be achieved?
A: * When the data can be perfectly separated using a hyperplane, there actually exists an infinite number of these hyperplanes
* Intuition: a hyperplane can usually be shifted a tiny bit up, or down, or rotated, without coming into contact with any of the observations
* Large margin classifier: choosing the hyperplance that is farthest from the training observations
* This margin can be achieved using support vectors

Source

[ VIDEO OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Joe DeCosmo, @Enova

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Joe DeCosmo, @Enova

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

If we have data, let’s look at data. If all we have are opinions, let’s go with mine. – Jim Barksdale

[ PODCAST OF THE WEEK]

#BigData @AnalyticsWeek #FutureOfData #Podcast with Nathaniel Lin (@analytics123), @NFPA

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Nathaniel Lin (@analytics123), @NFPA

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

As recently as 2009 there were only a handful of big data projects and total industry revenues were under $100 million. By the end of 2012 more than 90 percent of the Fortune 500 will likely have at least some big data initiatives under way.

Sourced from: Analytics.CLUB #WEB Newsletter

Jun 15, 17: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data Accuracy  Source

[ AnalyticsWeek BYTES]

>> 5 Steps Required to Building a Best Practice Digital Analytics Function by analyticsweekpick

>> 100 Greatest Quotes On Leadership by v1shal

>> For the airline industry, big data is cleared for take-off by anum

Wanna write? Click Here

[ NEWS BYTES]

>>
 The Rise of Network Functions Virtualization – Virtualization Review Under  Virtualization

>>
 Data Science Up and Down the Ladder of Abstraction – InfoQ.com Under  Data Science

>>
 Wildly inaccurate election forecasts highlight Big Data challenges – ZDNet Under  Big Data Analytics

More NEWS ? Click Here

[ FEATURED COURSE]

Process Mining: Data science in Action

image

Process mining is the missing link between model-based process analysis and data-oriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be ap… more

[ FEATURED READ]

How to Create a Mind: The Secret of Human Thought Revealed

image

Ray Kurzweil is arguably today’s most influential—and often controversial—futurist. In How to Create a Mind, Kurzweil presents a provocative exploration of the most important project in human-machine civilization—reverse… more

[ TIPS & TRICKS OF THE WEEK]

Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.

[ DATA SCIENCE Q&A]

Q:Is it better to spend 5 days developing a 90% accurate solution, or 10 days for 100% accuracy? Depends on the context?
A: * “premature optimization is the root of all evils”
* At the beginning: quick-and-dirty model is better
* Optimization later
Other answer:
– Depends on the context
– Is error acceptable? Fraud detection, quality assurance

Source

[ VIDEO OF THE WEEK]

Surviving Internet of Things

 Surviving Internet of Things

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

In God we trust. All others must bring data. – W. Edwards Deming

[ PODCAST OF THE WEEK]

#FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

 #FutureOfData Podcast: Peter Morgan, CEO, Deep Learning Partnership

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

The largest AT&T database boasts titles including the largest volume of data in one unique database (312 terabytes) and the second largest number of rows in a unique database (1.9 trillion), which comprises AT&T’s extensive calling records.

Sourced from: Analytics.CLUB #WEB Newsletter