Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://events.analytics.club/tw/eventpull.php?cat=WEB): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
Warning: file_get_contents(http://news.analyticsweek.com/tw/newspull.php): failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15
[ COVER OF THE WEEK ]
Conditional Risk Source
[ AnalyticsWeek BYTES]
>> Big data solves mystery: Why humans have no more genes than worms by analyticsweekpick
>> Making Big Data Work: Supply Chain Management by analyticsweekpick
>> @Schmarzo @DellEMC on Ingredients of healthy #DataScience practice #FutureOfData #Podcast by v1shal
[ FEATURED COURSE]
![]() |
[ FEATURED READ]
The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
![]() |
[ TIPS & TRICKS OF THE WEEK]
Fix the Culture, spread awareness to get awareness
Adoption of analytics tools and capabilities has not yet caught up to industry standards. Talent has always been the bottleneck towards achieving the comparative enterprise adoption. One of the primal reason is lack of understanding and knowledge within the stakeholders. To facilitate wider adoption, data analytics leaders, users, and community members needs to step up to create awareness within the organization. An aware organization goes a long way in helping get quick buy-ins and better funding which ultimately leads to faster adoption. So be the voice that you want to hear from leadership.
[ DATA SCIENCE Q&A]
Q:How frequently an algorithm must be updated?
A: You want to update an algorithm when:
– You want the model to evolve as data streams through infrastructure
– The underlying data source is changing
– Example: a retail store model that remains accurate as the business grows
– Dealing with non-stationarity
Some options:
– Incremental algorithms: the model is updated every time it sees a new training example
Note: simple, you always have an up-to-date model but you cant incorporate data to different degrees.
Sometimes mandatory: when data must be discarded once seen (privacy)
– Periodic re-training in batch mode: simply buffer the relevant data and update the model every-so-often
Note: more decisions and more complex implementations
How frequently?
– Is the sacrifice worth it?
– Data horizon: how quickly do you need the most recent training example to be part of your model?
– Data obsolescence: how long does it take before data is irrelevant to the model? Are some older instances
more relevant than the newer ones?
Economics: generally, newer instances are more relevant than older ones. However, data from the same month, quarter or year of the last year can be more relevant than the same periods of the current year. In a recession period: data from previous recessions can be more relevant than newer data from different economic cycles.
Source
[ VIDEO OF THE WEEK]
Discussing Forecasting with Brett McLaughlin (@akabret), @Akamai
Subscribe to Youtube
[ QUOTE OF THE WEEK]
You can use all the quantitative data you can get, but you still have to distrust it and use your own intelligence and judgment. Alvin Tof
[ PODCAST OF THE WEEK]
Want to fix #DataScience ? fix #governance by @StephenGatchell @Dell #FutureOfData #Podcast
Subscribe
[ FACT OF THE WEEK]
A quarter of decision-makers surveyed predict that data volumes in their companies will rise by more than 60 per cent by the end of 2014, with the average of all respondents anticipating a growth of no less than 42 per cent.