May 30, 19: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

Warning: file_get_contents( failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents( failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15

Warning: file_get_contents( failed to open stream: HTTP request failed! in /home3/vishaltao/public_html/mytao/script/includeit.php on line 15


Weak data  Source


More WEB events? Click Here


Statistical Thinking and Data Analysis


This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and n… more


Storytelling with Data: A Data Visualization Guide for Business Professionals


Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You’ll discover the power of storytelling and the way to make data a pivotal point in your story. Th… more


Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.


Q:What is an outlier? Explain how you might screen for outliers and what would you do if you found them in your dataset. Also, explain what an inlier is and how you might screen for them and what would you do if you found them in your dataset
A: Outliers:
– An observation point that is distant from other observations
– Can occur by chance in any distribution
– Often, they indicate measurement error or a heavy-tailed distribution
– Measurement error: discard them or use robust statistics
– Heavy-tailed distribution: high skewness, can’t use tools assuming a normal distribution
– Three-sigma rules (normally distributed data): 1 in 22 observations will differ by twice the standard deviation from the mean
– Three-sigma rules: 1 in 370 observations will differ by three times the standard deviation from the mean

Three-sigma rules example: in a sample of 1000 observations, the presence of up to 5 observations deviating from the mean by more than three times the standard deviation is within the range of what can be expected, being less than twice the expected number and hence within 1 standard deviation of the expected number (Poisson distribution).

If the nature of the distribution is known a priori, it is possible to see if the number of outliers deviate significantly from what can be expected. For a given cutoff (samples fall beyond the cutoff with probability p), the number of outliers can be approximated with a Poisson distribution with lambda=pn. Example: if one takes a normal distribution with a cutoff 3 standard deviations from the mean, p=0.3% and thus we can approximate the number of samples whose deviation exceed 3 sigmas by a Poisson with lambda=3

Identifying outliers:
– No rigid mathematical method
– Subjective exercise: be careful
– Boxplots
– QQ plots (sample quantiles Vs theoretical quantiles)

Handling outliers:
– Depends on the cause
– Retention: when the underlying model is confidently known
– Regression problems: only exclude points which exhibit a large degree of influence on the estimated coefficients (Cook’s distance)

– Observation lying within the general distribution of other observed values
– Doesn’t perturb the results but are non-conforming and unusual
– Simple example: observation recorded in the wrong unit (°F instead of °C)

Identifying inliers:
– Mahalanobi’s distance
– Used to calculate the distance between two random vectors
– Difference with Euclidean distance: accounts for correlations
– Discard them



@AnalyticsWeek Panel Discussion: Big Data Analytics

 @AnalyticsWeek Panel Discussion: Big Data Analytics

Subscribe to  Youtube


Data is not information, information is not knowledge, knowledge is not understanding, understanding is not wisdom. – Clifford Stoll


#BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp

 #BigData @AnalyticsWeek #FutureOfData #Podcast with Eloy Sasot, News Corp


iTunes  GooglePlay


235 Terabytes of data has been collected by the U.S. Library of Congress in April 2011.

Sourced from: Analytics.CLUB #WEB Newsletter

Leave a Reply

Your email address will not be published. Required fields are marked *