Jun 21, 18: #AnalyticsClub #Newsletter (Events, Tips, News & more..)

[  COVER OF THE WEEK ]

image
Data Storage  Source

[ LOCAL EVENTS & SESSIONS]

More WEB events? Click Here

[ AnalyticsWeek BYTES]

>> Two More Customer Experience Facts and Suggestions You Can’t Ignore [INFOGRAPHIC] by bobehayes

>> What Is a Residential IP, Data Center Proxy and what are the Differences? by thomassujain

>> Ashok Srivastava(@aerotrekker) @Intuit on Winning the Art of #DataScience #FutureOfData #Podcast by admin

Wanna write? Click Here

[ NEWS BYTES]

>>
 Global BPO Business Analytics Market Share 2018 WNS Global … – The Mobile Herald Under  Business Analytics

>>
 Fund Me, KC: WISE IoT tech aims to lower energy bills, decrease carbon footprint – Startland News Under  IOT

>>
 Can State-of-the-Art Machine Learning Tools Give New Life to Household Survey Data? – Modern Diplomacy Under  Machine Learning

More NEWS ? Click Here

[ FEATURED COURSE]

Deep Learning Prerequisites: The Numpy Stack in Python

image

The Numpy, Scipy, Pandas, and Matplotlib stack: prep for deep learning, machine learning, and artificial intelligence… more

[ FEATURED READ]

On Intelligence

image

Jeff Hawkins, the man who created the PalmPilot, Treo smart phone, and other handheld devices, has reshaped our relationship to computers. Now he stands ready to revolutionize both neuroscience and computing in one strok… more

[ TIPS & TRICKS OF THE WEEK]

Winter is coming, warm your Analytics Club
Yes and yes! As we are heading into winter what better way but to talk about our increasing dependence on data analytics to help with our decision making. Data and analytics driven decision making is rapidly sneaking its way into our core corporate DNA and we are not churning practice ground to test those models fast enough. Such snugly looking models have hidden nails which could induce unchartered pain if go unchecked. This is the right time to start thinking about putting Analytics Club[Data Analytics CoE] in your work place to help Lab out the best practices and provide test environment for those models.

[ DATA SCIENCE Q&A]

Q:What is the life cycle of a data science project ?
A: 1. Data acquisition
Acquiring data from both internal and external sources, including social media or web scraping. In a steady state, data extraction and routines should be in place, and new sources, once identified would be acquired following the established processes

2. Data preparation
Also called data wrangling: cleaning the data and shaping it into a suitable form for later analyses. Involves exploratory data analysis and feature extraction.

3. Hypothesis & modelling
Like in data mining but not with samples, with all the data instead. Applying machine learning techniques to all the data. A key sub-step: model selection. This involves preparing a training set for model candidates, and validation and test sets for comparing model performances, selecting the best performing model, gauging model accuracy and preventing overfitting

4. Evaluation & interpretation

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

5. Deployment

6. Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

7. Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Steps 2 to 4 are repeated a number of times as needed; as the understanding of data and business becomes clearer and results from initial models and hypotheses are evaluated, further tweaks are performed. These may sometimes include step5 and be performed in a pre-production.

Deployment

Operations
Regular maintenance and operations. Includes performance tests to measure model performance, and can alert when performance goes beyond a certain acceptable threshold

Optimization
Can be triggered by failing performance, or due to the need to add new data sources and retraining the model or even to deploy new versions of an improved model

Note: with increasing maturity and well-defined project goals, pre-defined performance can help evaluate feasibility of the data science project early enough in the data-science life cycle. This early comparison helps the team refine hypothesis, discard the project if non-viable, change approaches.

Source

[ VIDEO OF THE WEEK]

Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

 Andrea Gallego(@risenthink) / @BCG on Managing Analytics Practice #FutureOfData #Podcast

Subscribe to  Youtube

[ QUOTE OF THE WEEK]

The goal is to turn data into information, and information into insight. – Carly Fiorina

[ PODCAST OF THE WEEK]

Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

 Dave Ulrich (@dave_ulrich) talks about role / responsibility of HR in #FutureOfWork #JobsOfFuture #Podcast

Subscribe 

iTunes  GooglePlay

[ FACT OF THE WEEK]

73% of organizations have already invested or plan to invest in big data by 2016

Sourced from: Analytics.CLUB #WEB Newsletter

Leave a Reply

Your email address will not be published. Required fields are marked *